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Topology-Guided Multi-Class Cell Context Generation for Digital Pathology
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• Cell types co-localization

• Characterize neighborhoods of holes
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Match holes based on:: 

size (persistence), and  spatial context (cross K functions)

Minimize distance between density values at matched locations

Results

Pathology image analysis suffers from limited annotations!

Solution: Augment training with generated labeled data.               

Generating pathology images usually involves two steps:

1. Generating spatial layout of cells. 

2. Filling in stains and textures.

Challenges: • Complexity of the cell layout.

• How to model and learn the underlying distribution.

We introduce mathematical descriptors to model and learn 

the spatial distribution of multi-class cells and their 

structural patterns.

Our Focus

Cell Context

• The arrangement of cells. 

• Their spatial co-localization.

• Important for pathology data analysis. 
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Sample Generated Cell Layouts

Method Lym. Tumor Stro. Mean

U-Net 0.498 0.744 0.476 0.572

U-Net + Aug. (Rand.) 0.625 0.735 0.472 0.611

U-Net + Aug. (Ours) 0.65 0.768 0.511 0.644
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Eval. of Persistence Diagrams (Cell Config. Matching)↓

Method Lym. Tumor Stro. Mean

w/o Spatial Descriptors + w/o $%% 0.8 1.74 1.66 1.4

w/o $%% 0.9 1.69 1.79 1.46

w/o Cross K-function Descriptor 0.75 1.74 1.77 1.42

Ours 0.74 1.64 1.71 1.36
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Model Backbone: A modified version of SPGAN*
* Li et al. SP-GAN: sphere-guided 3d shape generation and manipulation.
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